Metamath Proof Explorer


Definition df-upword

Description: Strictly increasing sequence is a sequence, adjacent elements of which increase. (Contributed by Ender Ting, 19-Nov-2024)

Ref Expression
Assertion df-upword Could not format assertion : No typesetting found for |- UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cS class S
1 0 cupword Could not format UpWord S : No typesetting found for class UpWord S with typecode class
2 vw setvar w
3 2 cv setvar w
4 0 cword class Word S
5 3 4 wcel wff w Word S
6 vk setvar k
7 cc0 class 0
8 cfzo class ..^
9 chash class .
10 3 9 cfv class w
11 cmin class
12 c1 class 1
13 10 12 11 co class w 1
14 7 13 8 co class 0 ..^ w 1
15 6 cv setvar k
16 15 3 cfv class w k
17 clt class <
18 caddc class +
19 15 12 18 co class k + 1
20 19 3 cfv class w k + 1
21 16 20 17 wbr wff w k < w k + 1
22 21 6 14 wral wff k 0 ..^ w 1 w k < w k + 1
23 5 22 wa wff w Word S k 0 ..^ w 1 w k < w k + 1
24 23 2 cab class w | w Word S k 0 ..^ w 1 w k < w k + 1
25 1 24 wceq Could not format UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } : No typesetting found for wff UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } with typecode wff