Metamath Proof Explorer


Definition df-upword

Description: Strictly increasing sequence is a sequence, adjacent elements of which increase. (Contributed by Ender Ting, 19-Nov-2024)

Ref Expression
Assertion df-upword UpWord 𝑆 = { 𝑤 ∣ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cS 𝑆
1 0 cupword UpWord 𝑆
2 vw 𝑤
3 2 cv 𝑤
4 0 cword Word 𝑆
5 3 4 wcel 𝑤 ∈ Word 𝑆
6 vk 𝑘
7 cc0 0
8 cfzo ..^
9 chash
10 3 9 cfv ( ♯ ‘ 𝑤 )
11 cmin
12 c1 1
13 10 12 11 co ( ( ♯ ‘ 𝑤 ) − 1 )
14 7 13 8 co ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) )
15 6 cv 𝑘
16 15 3 cfv ( 𝑤𝑘 )
17 clt <
18 caddc +
19 15 12 18 co ( 𝑘 + 1 )
20 19 3 cfv ( 𝑤 ‘ ( 𝑘 + 1 ) )
21 16 20 17 wbr ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) )
22 21 6 14 wral 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) )
23 5 22 wa ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) )
24 23 2 cab { 𝑤 ∣ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) }
25 1 24 wceq UpWord 𝑆 = { 𝑤 ∣ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) }