Step |
Hyp |
Ref |
Expression |
0 |
|
cS |
⊢ 𝑆 |
1 |
0
|
cupword |
⊢ UpWord 𝑆 |
2 |
|
vw |
⊢ 𝑤 |
3 |
2
|
cv |
⊢ 𝑤 |
4 |
0
|
cword |
⊢ Word 𝑆 |
5 |
3 4
|
wcel |
⊢ 𝑤 ∈ Word 𝑆 |
6 |
|
vk |
⊢ 𝑘 |
7 |
|
cc0 |
⊢ 0 |
8 |
|
cfzo |
⊢ ..^ |
9 |
|
chash |
⊢ ♯ |
10 |
3 9
|
cfv |
⊢ ( ♯ ‘ 𝑤 ) |
11 |
|
cmin |
⊢ − |
12 |
|
c1 |
⊢ 1 |
13 |
10 12 11
|
co |
⊢ ( ( ♯ ‘ 𝑤 ) − 1 ) |
14 |
7 13 8
|
co |
⊢ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) |
15 |
6
|
cv |
⊢ 𝑘 |
16 |
15 3
|
cfv |
⊢ ( 𝑤 ‘ 𝑘 ) |
17 |
|
clt |
⊢ < |
18 |
|
caddc |
⊢ + |
19 |
15 12 18
|
co |
⊢ ( 𝑘 + 1 ) |
20 |
19 3
|
cfv |
⊢ ( 𝑤 ‘ ( 𝑘 + 1 ) ) |
21 |
16 20 17
|
wbr |
⊢ ( 𝑤 ‘ 𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) |
22 |
21 6 14
|
wral |
⊢ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤 ‘ 𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) |
23 |
5 22
|
wa |
⊢ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤 ‘ 𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) |
24 |
23 2
|
cab |
⊢ { 𝑤 ∣ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤 ‘ 𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) } |
25 |
1 24
|
wceq |
⊢ UpWord 𝑆 = { 𝑤 ∣ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤 ‘ 𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) } |