Metamath Proof Explorer


Theorem upwordnul

Description: Empty set is an increasing sequence for every range. (Contributed by Ender Ting, 19-Nov-2024)

Ref Expression
Assertion upwordnul ∅ ∈ UpWord 𝑆

Proof

Step Hyp Ref Expression
1 0ex ∅ ∈ V
2 elab6g ( ∅ ∈ V → ( ∅ ∈ { 𝑤 ∣ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) } ↔ ∀ 𝑤 ( 𝑤 = ∅ → ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) ) ) )
3 1 2 ax-mp ( ∅ ∈ { 𝑤 ∣ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) } ↔ ∀ 𝑤 ( 𝑤 = ∅ → ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) ) )
4 wrd0 ∅ ∈ Word 𝑆
5 eleq1a ( ∅ ∈ Word 𝑆 → ( 𝑤 = ∅ → 𝑤 ∈ Word 𝑆 ) )
6 4 5 ax-mp ( 𝑤 = ∅ → 𝑤 ∈ Word 𝑆 )
7 fveq2 ( 𝑤 = ∅ → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ∅ ) )
8 hash0 ( ♯ ‘ ∅ ) = 0
9 7 8 eqtrdi ( 𝑤 = ∅ → ( ♯ ‘ 𝑤 ) = 0 )
10 9 oveq1d ( 𝑤 = ∅ → ( ( ♯ ‘ 𝑤 ) − 1 ) = ( 0 − 1 ) )
11 0red ( 𝑤 = ∅ → 0 ∈ ℝ )
12 11 lem1d ( 𝑤 = ∅ → ( 0 − 1 ) ≤ 0 )
13 10 12 eqbrtrd ( 𝑤 = ∅ → ( ( ♯ ‘ 𝑤 ) − 1 ) ≤ 0 )
14 0z 0 ∈ ℤ
15 9 14 eqeltrdi ( 𝑤 = ∅ → ( ♯ ‘ 𝑤 ) ∈ ℤ )
16 1zzd ( 𝑤 = ∅ → 1 ∈ ℤ )
17 15 16 zsubcld ( 𝑤 = ∅ → ( ( ♯ ‘ 𝑤 ) − 1 ) ∈ ℤ )
18 fzon ( ( 0 ∈ ℤ ∧ ( ( ♯ ‘ 𝑤 ) − 1 ) ∈ ℤ ) → ( ( ( ♯ ‘ 𝑤 ) − 1 ) ≤ 0 ↔ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) = ∅ ) )
19 14 17 18 sylancr ( 𝑤 = ∅ → ( ( ( ♯ ‘ 𝑤 ) − 1 ) ≤ 0 ↔ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) = ∅ ) )
20 13 19 mpbid ( 𝑤 = ∅ → ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) = ∅ )
21 rzal ( ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) = ∅ → ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) )
22 20 21 syl ( 𝑤 = ∅ → ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) )
23 6 22 jca ( 𝑤 = ∅ → ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) )
24 3 23 mpgbir ∅ ∈ { 𝑤 ∣ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) }
25 df-upword UpWord 𝑆 = { 𝑤 ∣ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) }
26 24 25 eleqtrri ∅ ∈ UpWord 𝑆