Description: Any increasing sequence is a sequence. (Contributed by Ender Ting, 19-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | upwordisword | ⊢ ( 𝐴 ∈ UpWord 𝑆 → 𝐴 ∈ Word 𝑆 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 | ⊢ ( 𝑤 = 𝐴 → ( 𝑤 ∈ Word 𝑆 ↔ 𝐴 ∈ Word 𝑆 ) ) | |
2 | df-upword | ⊢ UpWord 𝑆 = { 𝑤 ∣ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤 ‘ 𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) } | |
3 | 2 | abeq2i | ⊢ ( 𝑤 ∈ UpWord 𝑆 ↔ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤 ‘ 𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) ) |
4 | 3 | simplbi | ⊢ ( 𝑤 ∈ UpWord 𝑆 → 𝑤 ∈ Word 𝑆 ) |
5 | 1 4 | vtoclga | ⊢ ( 𝐴 ∈ UpWord 𝑆 → 𝐴 ∈ Word 𝑆 ) |