Metamath Proof Explorer


Theorem upwordisword

Description: Any increasing sequence is a sequence. (Contributed by Ender Ting, 19-Nov-2024)

Ref Expression
Assertion upwordisword ( 𝐴 ∈ UpWord 𝑆𝐴 ∈ Word 𝑆 )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝑤 = 𝐴 → ( 𝑤 ∈ Word 𝑆𝐴 ∈ Word 𝑆 ) )
2 df-upword UpWord 𝑆 = { 𝑤 ∣ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) }
3 2 abeq2i ( 𝑤 ∈ UpWord 𝑆 ↔ ( 𝑤 ∈ Word 𝑆 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ( 𝑤𝑘 ) < ( 𝑤 ‘ ( 𝑘 + 1 ) ) ) )
4 3 simplbi ( 𝑤 ∈ UpWord 𝑆𝑤 ∈ Word 𝑆 )
5 1 4 vtoclga ( 𝐴 ∈ UpWord 𝑆𝐴 ∈ Word 𝑆 )