| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cS |
|- S |
| 1 |
0
|
cupword |
|- UpWord S |
| 2 |
|
vw |
|- w |
| 3 |
2
|
cv |
|- w |
| 4 |
0
|
cword |
|- Word S |
| 5 |
3 4
|
wcel |
|- w e. Word S |
| 6 |
|
vk |
|- k |
| 7 |
|
cc0 |
|- 0 |
| 8 |
|
cfzo |
|- ..^ |
| 9 |
|
chash |
|- # |
| 10 |
3 9
|
cfv |
|- ( # ` w ) |
| 11 |
|
cmin |
|- - |
| 12 |
|
c1 |
|- 1 |
| 13 |
10 12 11
|
co |
|- ( ( # ` w ) - 1 ) |
| 14 |
7 13 8
|
co |
|- ( 0 ..^ ( ( # ` w ) - 1 ) ) |
| 15 |
6
|
cv |
|- k |
| 16 |
15 3
|
cfv |
|- ( w ` k ) |
| 17 |
|
clt |
|- < |
| 18 |
|
caddc |
|- + |
| 19 |
15 12 18
|
co |
|- ( k + 1 ) |
| 20 |
19 3
|
cfv |
|- ( w ` ( k + 1 ) ) |
| 21 |
16 20 17
|
wbr |
|- ( w ` k ) < ( w ` ( k + 1 ) ) |
| 22 |
21 6 14
|
wral |
|- A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) |
| 23 |
5 22
|
wa |
|- ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) |
| 24 |
23 2
|
cab |
|- { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } |
| 25 |
1 24
|
wceq |
|- UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } |