Metamath Proof Explorer


Definition df-upword

Description: Strictly increasing sequence is a sequence, adjacent elements of which increase. (Contributed by Ender Ting, 19-Nov-2024)

Ref Expression
Assertion df-upword
|- UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cS
 |-  S
1 0 cupword
 |-  UpWord S
2 vw
 |-  w
3 2 cv
 |-  w
4 0 cword
 |-  Word S
5 3 4 wcel
 |-  w e. Word S
6 vk
 |-  k
7 cc0
 |-  0
8 cfzo
 |-  ..^
9 chash
 |-  #
10 3 9 cfv
 |-  ( # ` w )
11 cmin
 |-  -
12 c1
 |-  1
13 10 12 11 co
 |-  ( ( # ` w ) - 1 )
14 7 13 8 co
 |-  ( 0 ..^ ( ( # ` w ) - 1 ) )
15 6 cv
 |-  k
16 15 3 cfv
 |-  ( w ` k )
17 clt
 |-  <
18 caddc
 |-  +
19 15 12 18 co
 |-  ( k + 1 )
20 19 3 cfv
 |-  ( w ` ( k + 1 ) )
21 16 20 17 wbr
 |-  ( w ` k ) < ( w ` ( k + 1 ) )
22 21 6 14 wral
 |-  A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) )
23 5 22 wa
 |-  ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) )
24 23 2 cab
 |-  { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) }
25 1 24 wceq
 |-  UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) }