Metamath Proof Explorer


Theorem s1fv

Description: Sole symbol of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1fv AB⟨“A”⟩0=A

Proof

Step Hyp Ref Expression
1 s1val AB⟨“A”⟩=0A
2 1 fveq1d AB⟨“A”⟩0=0A0
3 0nn0 00
4 fvsng 00AB0A0=A
5 3 4 mpan AB0A0=A
6 2 5 eqtrd AB⟨“A”⟩0=A