Description: If a vertex is adjacent to two different vertices in a simple graph, there is not only one edge starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 8-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | usgrf1oedg.i | |- I = ( iEdg ` G ) |
|
usgrf1oedg.e | |- E = ( Edg ` G ) |
||
Assertion | usgr2edg1 | |- ( ( ( G e. USGraph /\ A =/= B ) /\ ( { N , A } e. E /\ { B , N } e. E ) ) -> -. E! x e. dom I N e. ( I ` x ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrf1oedg.i | |- I = ( iEdg ` G ) |
|
2 | usgrf1oedg.e | |- E = ( Edg ` G ) |
|
3 | usgrumgr | |- ( G e. USGraph -> G e. UMGraph ) |
|
4 | 1 2 | umgr2edg1 | |- ( ( ( G e. UMGraph /\ A =/= B ) /\ ( { N , A } e. E /\ { B , N } e. E ) ) -> -. E! x e. dom I N e. ( I ` x ) ) |
5 | 3 4 | sylanl1 | |- ( ( ( G e. USGraph /\ A =/= B ) /\ ( { N , A } e. E /\ { B , N } e. E ) ) -> -. E! x e. dom I N e. ( I ` x ) ) |