Description: For a vertex incident to an edge there is another vertex incident to the edge in a simple graph. (Contributed by AV, 18-Oct-2020) (Proof shortened by AV, 5-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgredg2vtx | |- ( ( G e. USGraph /\ E e. ( Edg ` G ) /\ Y e. E ) -> E. y e. ( Vtx ` G ) E = { Y , y } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrupgr | |- ( G e. USGraph -> G e. UPGraph ) |
|
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 3 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 4 | 2 3 | upgredg2vtx | |- ( ( G e. UPGraph /\ E e. ( Edg ` G ) /\ Y e. E ) -> E. y e. ( Vtx ` G ) E = { Y , y } ) |
| 5 | 1 4 | syl3an1 | |- ( ( G e. USGraph /\ E e. ( Edg ` G ) /\ Y e. E ) -> E. y e. ( Vtx ` G ) E = { Y , y } ) |