Description: A simple graph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 11-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | usgrnloopv.e | |- E = ( iEdg ` G ) |
|
| Assertion | usgrnloop0 | |- ( G e. USGraph -> { x e. dom E | ( E ` x ) = { U } } = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrnloopv.e | |- E = ( iEdg ` G ) |
|
| 2 | usgrumgr | |- ( G e. USGraph -> G e. UMGraph ) |
|
| 3 | 1 | umgrnloop0 | |- ( G e. UMGraph -> { x e. dom E | ( E ` x ) = { U } } = (/) ) |
| 4 | 2 3 | syl | |- ( G e. USGraph -> { x e. dom E | ( E ` x ) = { U } } = (/) ) |