Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
|- ( iEdg ` G ) e. _V |
2 |
1
|
dmex |
|- dom ( iEdg ` G ) e. _V |
3 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
4 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
5 |
3 4
|
usgrf |
|- ( G e. USGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
6 |
|
hashf1rn |
|- ( ( dom ( iEdg ` G ) e. _V /\ ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) -> ( # ` ( iEdg ` G ) ) = ( # ` ran ( iEdg ` G ) ) ) |
7 |
2 5 6
|
sylancr |
|- ( G e. USGraph -> ( # ` ( iEdg ` G ) ) = ( # ` ran ( iEdg ` G ) ) ) |
8 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
9 |
8
|
a1i |
|- ( G e. USGraph -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
10 |
9
|
fveq2d |
|- ( G e. USGraph -> ( # ` ( Edg ` G ) ) = ( # ` ran ( iEdg ` G ) ) ) |
11 |
7 10
|
eqtr4d |
|- ( G e. USGraph -> ( # ` ( iEdg ` G ) ) = ( # ` ( Edg ` G ) ) ) |