Metamath Proof Explorer


Theorem ushgrun

Description: The union U of two (undirected) simple hypergraphs G and H with the same vertex set V is a (not necessarily simple) hypergraph with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 29-Nov-2020) (Revised by AV, 24-Oct-2021)

Ref Expression
Hypotheses ushgrun.g
|- ( ph -> G e. USHGraph )
ushgrun.h
|- ( ph -> H e. USHGraph )
ushgrun.e
|- E = ( iEdg ` G )
ushgrun.f
|- F = ( iEdg ` H )
ushgrun.vg
|- V = ( Vtx ` G )
ushgrun.vh
|- ( ph -> ( Vtx ` H ) = V )
ushgrun.i
|- ( ph -> ( dom E i^i dom F ) = (/) )
ushgrun.u
|- ( ph -> U e. W )
ushgrun.v
|- ( ph -> ( Vtx ` U ) = V )
ushgrun.un
|- ( ph -> ( iEdg ` U ) = ( E u. F ) )
Assertion ushgrun
|- ( ph -> U e. UHGraph )

Proof

Step Hyp Ref Expression
1 ushgrun.g
 |-  ( ph -> G e. USHGraph )
2 ushgrun.h
 |-  ( ph -> H e. USHGraph )
3 ushgrun.e
 |-  E = ( iEdg ` G )
4 ushgrun.f
 |-  F = ( iEdg ` H )
5 ushgrun.vg
 |-  V = ( Vtx ` G )
6 ushgrun.vh
 |-  ( ph -> ( Vtx ` H ) = V )
7 ushgrun.i
 |-  ( ph -> ( dom E i^i dom F ) = (/) )
8 ushgrun.u
 |-  ( ph -> U e. W )
9 ushgrun.v
 |-  ( ph -> ( Vtx ` U ) = V )
10 ushgrun.un
 |-  ( ph -> ( iEdg ` U ) = ( E u. F ) )
11 ushgruhgr
 |-  ( G e. USHGraph -> G e. UHGraph )
12 1 11 syl
 |-  ( ph -> G e. UHGraph )
13 ushgruhgr
 |-  ( H e. USHGraph -> H e. UHGraph )
14 2 13 syl
 |-  ( ph -> H e. UHGraph )
15 12 14 3 4 5 6 7 8 9 10 uhgrun
 |-  ( ph -> U e. UHGraph )