Metamath Proof Explorer


Theorem ushgrun

Description: The union U of two (undirected) simple hypergraphs G and H with the same vertex set V is a (not necessarily simple) hypergraph with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 29-Nov-2020) (Revised by AV, 24-Oct-2021)

Ref Expression
Hypotheses ushgrun.g ( 𝜑𝐺 ∈ USHGraph )
ushgrun.h ( 𝜑𝐻 ∈ USHGraph )
ushgrun.e 𝐸 = ( iEdg ‘ 𝐺 )
ushgrun.f 𝐹 = ( iEdg ‘ 𝐻 )
ushgrun.vg 𝑉 = ( Vtx ‘ 𝐺 )
ushgrun.vh ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 )
ushgrun.i ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ )
ushgrun.u ( 𝜑𝑈𝑊 )
ushgrun.v ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 )
ushgrun.un ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸𝐹 ) )
Assertion ushgrun ( 𝜑𝑈 ∈ UHGraph )

Proof

Step Hyp Ref Expression
1 ushgrun.g ( 𝜑𝐺 ∈ USHGraph )
2 ushgrun.h ( 𝜑𝐻 ∈ USHGraph )
3 ushgrun.e 𝐸 = ( iEdg ‘ 𝐺 )
4 ushgrun.f 𝐹 = ( iEdg ‘ 𝐻 )
5 ushgrun.vg 𝑉 = ( Vtx ‘ 𝐺 )
6 ushgrun.vh ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 )
7 ushgrun.i ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ )
8 ushgrun.u ( 𝜑𝑈𝑊 )
9 ushgrun.v ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 )
10 ushgrun.un ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸𝐹 ) )
11 ushgruhgr ( 𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph )
12 1 11 syl ( 𝜑𝐺 ∈ UHGraph )
13 ushgruhgr ( 𝐻 ∈ USHGraph → 𝐻 ∈ UHGraph )
14 2 13 syl ( 𝜑𝐻 ∈ UHGraph )
15 12 14 3 4 5 6 7 8 9 10 uhgrun ( 𝜑𝑈 ∈ UHGraph )