Metamath Proof Explorer


Theorem uspgrloopvtxel

Description: A vertex in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop ). (Contributed by AV, 17-Dec-2020)

Ref Expression
Hypothesis uspgrloopvtx.g
|- G = <. V , { <. A , { N } >. } >.
Assertion uspgrloopvtxel
|- ( ( V e. W /\ N e. V ) -> N e. ( Vtx ` G ) )

Proof

Step Hyp Ref Expression
1 uspgrloopvtx.g
 |-  G = <. V , { <. A , { N } >. } >.
2 1 uspgrloopvtx
 |-  ( V e. W -> ( Vtx ` G ) = V )
3 eleq2
 |-  ( V = ( Vtx ` G ) -> ( N e. V <-> N e. ( Vtx ` G ) ) )
4 3 biimpd
 |-  ( V = ( Vtx ` G ) -> ( N e. V -> N e. ( Vtx ` G ) ) )
5 4 eqcoms
 |-  ( ( Vtx ` G ) = V -> ( N e. V -> N e. ( Vtx ` G ) ) )
6 5 com12
 |-  ( N e. V -> ( ( Vtx ` G ) = V -> N e. ( Vtx ` G ) ) )
7 2 6 mpan9
 |-  ( ( V e. W /\ N e. V ) -> N e. ( Vtx ` G ) )