Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | uun123.1 | |- ( ( ph /\ ch /\ ps ) -> th ) |
|
Assertion | uun123 | |- ( ( ph /\ ps /\ ch ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uun123.1 | |- ( ( ph /\ ch /\ ps ) -> th ) |
|
2 | 3ancomb | |- ( ( ph /\ ch /\ ps ) <-> ( ph /\ ps /\ ch ) ) |
|
3 | 2 1 | sylbir | |- ( ( ph /\ ps /\ ch ) -> th ) |