Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | uun2131p1.1 | |- ( ( ( ph /\ ch ) /\ ( ph /\ ps ) ) -> th ) |
|
Assertion | uun2131p1 | |- ( ( ph /\ ps /\ ch ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uun2131p1.1 | |- ( ( ( ph /\ ch ) /\ ( ph /\ ps ) ) -> th ) |
|
2 | ancom | |- ( ( ( ph /\ ps ) /\ ( ph /\ ch ) ) <-> ( ( ph /\ ch ) /\ ( ph /\ ps ) ) ) |
|
3 | 2 1 | sylbi | |- ( ( ( ph /\ ps ) /\ ( ph /\ ch ) ) -> th ) |
4 | 3 | 3impdi | |- ( ( ph /\ ps /\ ch ) -> th ) |