| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uvcvv.u |
|- U = ( R unitVec I ) |
| 2 |
|
uvcvv.r |
|- ( ph -> R e. V ) |
| 3 |
|
uvcvv.i |
|- ( ph -> I e. W ) |
| 4 |
|
uvcvv.j |
|- ( ph -> J e. I ) |
| 5 |
|
uvcvv0.k |
|- ( ph -> K e. I ) |
| 6 |
|
uvcvv0.jk |
|- ( ph -> J =/= K ) |
| 7 |
|
uvcvv0.z |
|- .0. = ( 0g ` R ) |
| 8 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 9 |
1 8 7
|
uvcvval |
|- ( ( ( R e. V /\ I e. W /\ J e. I ) /\ K e. I ) -> ( ( U ` J ) ` K ) = if ( K = J , ( 1r ` R ) , .0. ) ) |
| 10 |
2 3 4 5 9
|
syl31anc |
|- ( ph -> ( ( U ` J ) ` K ) = if ( K = J , ( 1r ` R ) , .0. ) ) |
| 11 |
|
nesym |
|- ( J =/= K <-> -. K = J ) |
| 12 |
6 11
|
sylib |
|- ( ph -> -. K = J ) |
| 13 |
12
|
iffalsed |
|- ( ph -> if ( K = J , ( 1r ` R ) , .0. ) = .0. ) |
| 14 |
10 13
|
eqtrd |
|- ( ph -> ( ( U ` J ) ` K ) = .0. ) |