| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uvcvv.u |
⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) |
| 2 |
|
uvcvv.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
| 3 |
|
uvcvv.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 4 |
|
uvcvv.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) |
| 5 |
|
uvcvv0.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝐼 ) |
| 6 |
|
uvcvv0.jk |
⊢ ( 𝜑 → 𝐽 ≠ 𝐾 ) |
| 7 |
|
uvcvv0.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 8 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 9 |
1 8 7
|
uvcvval |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼 ) ∧ 𝐾 ∈ 𝐼 ) → ( ( 𝑈 ‘ 𝐽 ) ‘ 𝐾 ) = if ( 𝐾 = 𝐽 , ( 1r ‘ 𝑅 ) , 0 ) ) |
| 10 |
2 3 4 5 9
|
syl31anc |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝐽 ) ‘ 𝐾 ) = if ( 𝐾 = 𝐽 , ( 1r ‘ 𝑅 ) , 0 ) ) |
| 11 |
|
nesym |
⊢ ( 𝐽 ≠ 𝐾 ↔ ¬ 𝐾 = 𝐽 ) |
| 12 |
6 11
|
sylib |
⊢ ( 𝜑 → ¬ 𝐾 = 𝐽 ) |
| 13 |
12
|
iffalsed |
⊢ ( 𝜑 → if ( 𝐾 = 𝐽 , ( 1r ‘ 𝑅 ) , 0 ) = 0 ) |
| 14 |
10 13
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝐽 ) ‘ 𝐾 ) = 0 ) |