| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uz0 |
|- ( -. M e. ZZ -> ( ZZ>= ` M ) = (/) ) |
| 2 |
1
|
adantl |
|- ( ( ( ZZ>= ` M ) =/= (/) /\ -. M e. ZZ ) -> ( ZZ>= ` M ) = (/) ) |
| 3 |
|
neneq |
|- ( ( ZZ>= ` M ) =/= (/) -> -. ( ZZ>= ` M ) = (/) ) |
| 4 |
3
|
adantr |
|- ( ( ( ZZ>= ` M ) =/= (/) /\ -. M e. ZZ ) -> -. ( ZZ>= ` M ) = (/) ) |
| 5 |
2 4
|
condan |
|- ( ( ZZ>= ` M ) =/= (/) -> M e. ZZ ) |
| 6 |
|
id |
|- ( M e. ZZ -> M e. ZZ ) |
| 7 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
| 8 |
6 7
|
uzn0d |
|- ( M e. ZZ -> ( ZZ>= ` M ) =/= (/) ) |
| 9 |
5 8
|
impbii |
|- ( ( ZZ>= ` M ) =/= (/) <-> M e. ZZ ) |