| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vciOLD.1 |
|- G = ( 1st ` W ) |
| 2 |
|
vciOLD.2 |
|- S = ( 2nd ` W ) |
| 3 |
|
vciOLD.3 |
|- X = ran G |
| 4 |
1 2 3
|
vcidOLD |
|- ( ( W e. CVecOLD /\ A e. X ) -> ( 1 S A ) = A ) |
| 5 |
4 4
|
oveq12d |
|- ( ( W e. CVecOLD /\ A e. X ) -> ( ( 1 S A ) G ( 1 S A ) ) = ( A G A ) ) |
| 6 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 7 |
6
|
oveq1i |
|- ( 2 S A ) = ( ( 1 + 1 ) S A ) |
| 8 |
|
ax-1cn |
|- 1 e. CC |
| 9 |
1 2 3
|
vcdir |
|- ( ( W e. CVecOLD /\ ( 1 e. CC /\ 1 e. CC /\ A e. X ) ) -> ( ( 1 + 1 ) S A ) = ( ( 1 S A ) G ( 1 S A ) ) ) |
| 10 |
8 9
|
mp3anr1 |
|- ( ( W e. CVecOLD /\ ( 1 e. CC /\ A e. X ) ) -> ( ( 1 + 1 ) S A ) = ( ( 1 S A ) G ( 1 S A ) ) ) |
| 11 |
8 10
|
mpanr1 |
|- ( ( W e. CVecOLD /\ A e. X ) -> ( ( 1 + 1 ) S A ) = ( ( 1 S A ) G ( 1 S A ) ) ) |
| 12 |
7 11
|
eqtr2id |
|- ( ( W e. CVecOLD /\ A e. X ) -> ( ( 1 S A ) G ( 1 S A ) ) = ( 2 S A ) ) |
| 13 |
5 12
|
eqtr3d |
|- ( ( W e. CVecOLD /\ A e. X ) -> ( A G A ) = ( 2 S A ) ) |