Step |
Hyp |
Ref |
Expression |
1 |
|
vciOLD.1 |
|- G = ( 1st ` W ) |
2 |
|
vciOLD.2 |
|- S = ( 2nd ` W ) |
3 |
|
vciOLD.3 |
|- X = ran G |
4 |
1 2 3
|
vcidOLD |
|- ( ( W e. CVecOLD /\ A e. X ) -> ( 1 S A ) = A ) |
5 |
4 4
|
oveq12d |
|- ( ( W e. CVecOLD /\ A e. X ) -> ( ( 1 S A ) G ( 1 S A ) ) = ( A G A ) ) |
6 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
7 |
6
|
oveq1i |
|- ( 2 S A ) = ( ( 1 + 1 ) S A ) |
8 |
|
ax-1cn |
|- 1 e. CC |
9 |
1 2 3
|
vcdir |
|- ( ( W e. CVecOLD /\ ( 1 e. CC /\ 1 e. CC /\ A e. X ) ) -> ( ( 1 + 1 ) S A ) = ( ( 1 S A ) G ( 1 S A ) ) ) |
10 |
8 9
|
mp3anr1 |
|- ( ( W e. CVecOLD /\ ( 1 e. CC /\ A e. X ) ) -> ( ( 1 + 1 ) S A ) = ( ( 1 S A ) G ( 1 S A ) ) ) |
11 |
8 10
|
mpanr1 |
|- ( ( W e. CVecOLD /\ A e. X ) -> ( ( 1 + 1 ) S A ) = ( ( 1 S A ) G ( 1 S A ) ) ) |
12 |
7 11
|
eqtr2id |
|- ( ( W e. CVecOLD /\ A e. X ) -> ( ( 1 S A ) G ( 1 S A ) ) = ( 2 S A ) ) |
13 |
5 12
|
eqtr3d |
|- ( ( W e. CVecOLD /\ A e. X ) -> ( A G A ) = ( 2 S A ) ) |