| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmvs1.v |
|- V = ( Base ` W ) |
| 2 |
|
clmvs1.s |
|- .x. = ( .s ` W ) |
| 3 |
|
clmvs2.a |
|- .+ = ( +g ` W ) |
| 4 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 5 |
4
|
oveq1i |
|- ( 2 .x. A ) = ( ( 1 + 1 ) .x. A ) |
| 6 |
5
|
a1i |
|- ( ( W e. CMod /\ A e. V ) -> ( 2 .x. A ) = ( ( 1 + 1 ) .x. A ) ) |
| 7 |
|
simpl |
|- ( ( W e. CMod /\ A e. V ) -> W e. CMod ) |
| 8 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 9 |
8
|
clm1 |
|- ( W e. CMod -> 1 = ( 1r ` ( Scalar ` W ) ) ) |
| 10 |
|
clmlmod |
|- ( W e. CMod -> W e. LMod ) |
| 11 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 12 |
|
eqid |
|- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
| 13 |
8 11 12
|
lmod1cl |
|- ( W e. LMod -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 14 |
10 13
|
syl |
|- ( W e. CMod -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 15 |
9 14
|
eqeltrd |
|- ( W e. CMod -> 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 16 |
15
|
adantr |
|- ( ( W e. CMod /\ A e. V ) -> 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 17 |
|
simpr |
|- ( ( W e. CMod /\ A e. V ) -> A e. V ) |
| 18 |
1 8 2 11 3
|
clmvsdir |
|- ( ( W e. CMod /\ ( 1 e. ( Base ` ( Scalar ` W ) ) /\ 1 e. ( Base ` ( Scalar ` W ) ) /\ A e. V ) ) -> ( ( 1 + 1 ) .x. A ) = ( ( 1 .x. A ) .+ ( 1 .x. A ) ) ) |
| 19 |
7 16 16 17 18
|
syl13anc |
|- ( ( W e. CMod /\ A e. V ) -> ( ( 1 + 1 ) .x. A ) = ( ( 1 .x. A ) .+ ( 1 .x. A ) ) ) |
| 20 |
1 2
|
clmvs1 |
|- ( ( W e. CMod /\ A e. V ) -> ( 1 .x. A ) = A ) |
| 21 |
20 20
|
oveq12d |
|- ( ( W e. CMod /\ A e. V ) -> ( ( 1 .x. A ) .+ ( 1 .x. A ) ) = ( A .+ A ) ) |
| 22 |
6 19 21
|
3eqtrrd |
|- ( ( W e. CMod /\ A e. V ) -> ( A .+ A ) = ( 2 .x. A ) ) |