| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmvscl.v |
|- V = ( Base ` W ) |
| 2 |
|
clmvscl.f |
|- F = ( Scalar ` W ) |
| 3 |
|
clmvscl.s |
|- .x. = ( .s ` W ) |
| 4 |
|
clmvscl.k |
|- K = ( Base ` F ) |
| 5 |
|
clmvsdir.a |
|- .+ = ( +g ` W ) |
| 6 |
2
|
clmadd |
|- ( W e. CMod -> + = ( +g ` F ) ) |
| 7 |
6
|
oveqd |
|- ( W e. CMod -> ( Q + R ) = ( Q ( +g ` F ) R ) ) |
| 8 |
7
|
oveq1d |
|- ( W e. CMod -> ( ( Q + R ) .x. X ) = ( ( Q ( +g ` F ) R ) .x. X ) ) |
| 9 |
8
|
adantr |
|- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q + R ) .x. X ) = ( ( Q ( +g ` F ) R ) .x. X ) ) |
| 10 |
|
clmlmod |
|- ( W e. CMod -> W e. LMod ) |
| 11 |
|
eqid |
|- ( +g ` F ) = ( +g ` F ) |
| 12 |
1 5 2 3 4 11
|
lmodvsdir |
|- ( ( W e. LMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q ( +g ` F ) R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) ) |
| 13 |
10 12
|
sylan |
|- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q ( +g ` F ) R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) ) |
| 14 |
9 13
|
eqtrd |
|- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q + R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) ) |