Metamath Proof Explorer


Theorem clmvsdir

Description: Distributive law for scalar product (right-distributivity). ( lmodvsdir analog.) (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clmvscl.v
|- V = ( Base ` W )
clmvscl.f
|- F = ( Scalar ` W )
clmvscl.s
|- .x. = ( .s ` W )
clmvscl.k
|- K = ( Base ` F )
clmvsdir.a
|- .+ = ( +g ` W )
Assertion clmvsdir
|- ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q + R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) )

Proof

Step Hyp Ref Expression
1 clmvscl.v
 |-  V = ( Base ` W )
2 clmvscl.f
 |-  F = ( Scalar ` W )
3 clmvscl.s
 |-  .x. = ( .s ` W )
4 clmvscl.k
 |-  K = ( Base ` F )
5 clmvsdir.a
 |-  .+ = ( +g ` W )
6 2 clmadd
 |-  ( W e. CMod -> + = ( +g ` F ) )
7 6 oveqd
 |-  ( W e. CMod -> ( Q + R ) = ( Q ( +g ` F ) R ) )
8 7 oveq1d
 |-  ( W e. CMod -> ( ( Q + R ) .x. X ) = ( ( Q ( +g ` F ) R ) .x. X ) )
9 8 adantr
 |-  ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q + R ) .x. X ) = ( ( Q ( +g ` F ) R ) .x. X ) )
10 clmlmod
 |-  ( W e. CMod -> W e. LMod )
11 eqid
 |-  ( +g ` F ) = ( +g ` F )
12 1 5 2 3 4 11 lmodvsdir
 |-  ( ( W e. LMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q ( +g ` F ) R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) )
13 10 12 sylan
 |-  ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q ( +g ` F ) R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) )
14 9 13 eqtrd
 |-  ( ( W e. CMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q + R ) .x. X ) = ( ( Q .x. X ) .+ ( R .x. X ) ) )