Metamath Proof Explorer


Theorem clmvsdir

Description: Distributive law for scalar product (right-distributivity). ( lmodvsdir analog.) (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clmvscl.v 𝑉 = ( Base ‘ 𝑊 )
clmvscl.f 𝐹 = ( Scalar ‘ 𝑊 )
clmvscl.s · = ( ·𝑠𝑊 )
clmvscl.k 𝐾 = ( Base ‘ 𝐹 )
clmvsdir.a + = ( +g𝑊 )
Assertion clmvsdir ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) ) → ( ( 𝑄 + 𝑅 ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 clmvscl.v 𝑉 = ( Base ‘ 𝑊 )
2 clmvscl.f 𝐹 = ( Scalar ‘ 𝑊 )
3 clmvscl.s · = ( ·𝑠𝑊 )
4 clmvscl.k 𝐾 = ( Base ‘ 𝐹 )
5 clmvsdir.a + = ( +g𝑊 )
6 2 clmadd ( 𝑊 ∈ ℂMod → + = ( +g𝐹 ) )
7 6 oveqd ( 𝑊 ∈ ℂMod → ( 𝑄 + 𝑅 ) = ( 𝑄 ( +g𝐹 ) 𝑅 ) )
8 7 oveq1d ( 𝑊 ∈ ℂMod → ( ( 𝑄 + 𝑅 ) · 𝑋 ) = ( ( 𝑄 ( +g𝐹 ) 𝑅 ) · 𝑋 ) )
9 8 adantr ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) ) → ( ( 𝑄 + 𝑅 ) · 𝑋 ) = ( ( 𝑄 ( +g𝐹 ) 𝑅 ) · 𝑋 ) )
10 clmlmod ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod )
11 eqid ( +g𝐹 ) = ( +g𝐹 )
12 1 5 2 3 4 11 lmodvsdir ( ( 𝑊 ∈ LMod ∧ ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) ) → ( ( 𝑄 ( +g𝐹 ) 𝑅 ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) )
13 10 12 sylan ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) ) → ( ( 𝑄 ( +g𝐹 ) 𝑅 ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) )
14 9 13 eqtrd ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) ) → ( ( 𝑄 + 𝑅 ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) )