Database BASIC TOPOLOGY Metric subcomplex vector spaces Subcomplex modules clmvsdi  
				
		 
		
			
		 
		Description:   Distributive law for scalar product (left-distributivity).  ( lmodvsdi  analog.)  (Contributed by NM , 3-Nov-2006)   (Revised by AV , 28-Sep-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						clmvscl.v ⊢  𝑉   =  ( Base ‘ 𝑊  )  
					
						clmvscl.f ⊢  𝐹   =  ( Scalar ‘ 𝑊  )  
					
						clmvscl.s ⊢   ·    =  (  · 𝑠   ‘ 𝑊  )  
					
						clmvscl.k ⊢  𝐾   =  ( Base ‘ 𝐹  )  
					
						clmvsdir.a ⊢   +    =  ( +g  ‘ 𝑊  )  
				
					Assertion 
					clmvsdi ⊢   ( ( 𝑊   ∈  ℂMod  ∧  ( 𝐴   ∈  𝐾   ∧  𝑋   ∈  𝑉   ∧  𝑌   ∈  𝑉  ) )  →  ( 𝐴   ·   ( 𝑋   +   𝑌  ) )  =  ( ( 𝐴   ·   𝑋  )  +   ( 𝐴   ·   𝑌  ) ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							clmvscl.v ⊢  𝑉   =  ( Base ‘ 𝑊  )  
						
							2 
								
							 
							clmvscl.f ⊢  𝐹   =  ( Scalar ‘ 𝑊  )  
						
							3 
								
							 
							clmvscl.s ⊢   ·    =  (  · 𝑠   ‘ 𝑊  )  
						
							4 
								
							 
							clmvscl.k ⊢  𝐾   =  ( Base ‘ 𝐹  )  
						
							5 
								
							 
							clmvsdir.a ⊢   +    =  ( +g  ‘ 𝑊  )  
						
							6 
								
							 
							clmlmod ⊢  ( 𝑊   ∈  ℂMod  →  𝑊   ∈  LMod )  
						
							7 
								1  5  2  3  4 
							 
							lmodvsdi ⊢  ( ( 𝑊   ∈  LMod  ∧  ( 𝐴   ∈  𝐾   ∧  𝑋   ∈  𝑉   ∧  𝑌   ∈  𝑉  ) )  →  ( 𝐴   ·   ( 𝑋   +   𝑌  ) )  =  ( ( 𝐴   ·   𝑋  )  +   ( 𝐴   ·   𝑌  ) ) )  
						
							8 
								6  7 
							 
							sylan ⊢  ( ( 𝑊   ∈  ℂMod  ∧  ( 𝐴   ∈  𝐾   ∧  𝑋   ∈  𝑉   ∧  𝑌   ∈  𝑉  ) )  →  ( 𝐴   ·   ( 𝑋   +   𝑌  ) )  =  ( ( 𝐴   ·   𝑋  )  +   ( 𝐴   ·   𝑌  ) ) )