Metamath Proof Explorer


Theorem clmvsdi

Description: Distributive law for scalar product (left-distributivity). ( lmodvsdi analog.) (Contributed by NM, 3-Nov-2006) (Revised by AV, 28-Sep-2021)

Ref Expression
Hypotheses clmvscl.v V=BaseW
clmvscl.f F=ScalarW
clmvscl.s ·˙=W
clmvscl.k K=BaseF
clmvsdir.a +˙=+W
Assertion clmvsdi WCModAKXVYVA·˙X+˙Y=A·˙X+˙A·˙Y

Proof

Step Hyp Ref Expression
1 clmvscl.v V=BaseW
2 clmvscl.f F=ScalarW
3 clmvscl.s ·˙=W
4 clmvscl.k K=BaseF
5 clmvsdir.a +˙=+W
6 clmlmod WCModWLMod
7 1 5 2 3 4 lmodvsdi WLModAKXVYVA·˙X+˙Y=A·˙X+˙A·˙Y
8 6 7 sylan WCModAKXVYVA·˙X+˙Y=A·˙X+˙A·˙Y