| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmvs1.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
clmvs1.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 3 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 4 |
3
|
clm1 |
⊢ ( 𝑊 ∈ ℂMod → 1 = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → 1 = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 6 |
5
|
oveq1d |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( 1 · 𝑋 ) = ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) · 𝑋 ) ) |
| 7 |
|
clmlmod |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) |
| 8 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
| 9 |
1 3 2 8
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) · 𝑋 ) = 𝑋 ) |
| 10 |
7 9
|
sylan |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) · 𝑋 ) = 𝑋 ) |
| 11 |
6 10
|
eqtrd |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( 1 · 𝑋 ) = 𝑋 ) |