| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clm0vs.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | clm0vs.f |  |-  F = ( Scalar ` W ) | 
						
							| 3 |  | clm0vs.s |  |-  .x. = ( .s ` W ) | 
						
							| 4 |  | clm0vs.z |  |-  .0. = ( 0g ` W ) | 
						
							| 5 | 2 | clm0 |  |-  ( W e. CMod -> 0 = ( 0g ` F ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( W e. CMod /\ X e. V ) -> 0 = ( 0g ` F ) ) | 
						
							| 7 | 6 | oveq1d |  |-  ( ( W e. CMod /\ X e. V ) -> ( 0 .x. X ) = ( ( 0g ` F ) .x. X ) ) | 
						
							| 8 |  | clmlmod |  |-  ( W e. CMod -> W e. LMod ) | 
						
							| 9 |  | eqid |  |-  ( 0g ` F ) = ( 0g ` F ) | 
						
							| 10 | 1 2 3 9 4 | lmod0vs |  |-  ( ( W e. LMod /\ X e. V ) -> ( ( 0g ` F ) .x. X ) = .0. ) | 
						
							| 11 | 8 10 | sylan |  |-  ( ( W e. CMod /\ X e. V ) -> ( ( 0g ` F ) .x. X ) = .0. ) | 
						
							| 12 | 7 11 | eqtrd |  |-  ( ( W e. CMod /\ X e. V ) -> ( 0 .x. X ) = .0. ) |