| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clm0vs.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
clm0vs.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
clm0vs.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
clm0vs.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 5 |
2
|
clm0 |
⊢ ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ 𝐹 ) ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → 0 = ( 0g ‘ 𝐹 ) ) |
| 7 |
6
|
oveq1d |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( 0 · 𝑋 ) = ( ( 0g ‘ 𝐹 ) · 𝑋 ) ) |
| 8 |
|
clmlmod |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) |
| 9 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
| 10 |
1 2 3 9 4
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 0g ‘ 𝐹 ) · 𝑋 ) = 0 ) |
| 11 |
8 10
|
sylan |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 0g ‘ 𝐹 ) · 𝑋 ) = 0 ) |
| 12 |
7 11
|
eqtrd |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( 0 · 𝑋 ) = 0 ) |