| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmopfne.t |
⊢ · = ( ·sf ‘ 𝑊 ) |
| 2 |
|
clmopfne.a |
⊢ + = ( +𝑓 ‘ 𝑊 ) |
| 3 |
|
clmlmod |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) |
| 4 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 5 |
4
|
a1i |
⊢ ( 𝑊 ∈ ℂMod → 1 ≠ 0 ) |
| 6 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 7 |
6
|
clm1 |
⊢ ( 𝑊 ∈ ℂMod → 1 = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 8 |
6
|
clm0 |
⊢ ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 9 |
5 7 8
|
3netr3d |
⊢ ( 𝑊 ∈ ℂMod → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 12 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 13 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
| 14 |
1 2 10 6 11 12 13
|
lmodfopne |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → + ≠ · ) |
| 15 |
3 9 14
|
syl2anc |
⊢ ( 𝑊 ∈ ℂMod → + ≠ · ) |