Metamath Proof Explorer


Theorem vtoclefex

Description: Implicit substitution of a class for a setvar variable. (Contributed by ML, 17-Oct-2020)

Ref Expression
Hypotheses vtoclefex.1
|- F/ x ph
vtoclefex.3
|- ( x = A -> ph )
Assertion vtoclefex
|- ( A e. V -> ph )

Proof

Step Hyp Ref Expression
1 vtoclefex.1
 |-  F/ x ph
2 vtoclefex.3
 |-  ( x = A -> ph )
3 2 ax-gen
 |-  A. x ( x = A -> ph )
4 vtoclegft
 |-  ( ( A e. V /\ F/ x ph /\ A. x ( x = A -> ph ) ) -> ph )
5 1 3 4 mp3an23
 |-  ( A e. V -> ph )