Metamath Proof Explorer


Theorem vtoclefex

Description: Implicit substitution of a class for a setvar variable. (Contributed by ML, 17-Oct-2020)

Ref Expression
Hypotheses vtoclefex.1 𝑥 𝜑
vtoclefex.3 ( 𝑥 = 𝐴𝜑 )
Assertion vtoclefex ( 𝐴𝑉𝜑 )

Proof

Step Hyp Ref Expression
1 vtoclefex.1 𝑥 𝜑
2 vtoclefex.3 ( 𝑥 = 𝐴𝜑 )
3 2 ax-gen 𝑥 ( 𝑥 = 𝐴𝜑 )
4 vtoclegft ( ( 𝐴𝑉 ∧ Ⅎ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) → 𝜑 )
5 1 3 4 mp3an23 ( 𝐴𝑉𝜑 )