Metamath Proof Explorer
Description: Implicit substitution of a class for a setvar variable. (Contributed by ML, 17-Oct-2020)
|
|
Ref |
Expression |
|
Hypotheses |
vtoclefex.1 |
⊢ Ⅎ 𝑥 𝜑 |
|
|
vtoclefex.3 |
⊢ ( 𝑥 = 𝐴 → 𝜑 ) |
|
Assertion |
vtoclefex |
⊢ ( 𝐴 ∈ 𝑉 → 𝜑 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
vtoclefex.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
vtoclefex.3 |
⊢ ( 𝑥 = 𝐴 → 𝜑 ) |
3 |
2
|
ax-gen |
⊢ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) |
4 |
|
vtoclegft |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) → 𝜑 ) |
5 |
1 3 4
|
mp3an23 |
⊢ ( 𝐴 ∈ 𝑉 → 𝜑 ) |