Metamath Proof Explorer


Theorem rnmptsn

Description: The range of a function mapping to singletons. (Contributed by ML, 15-Jul-2020)

Ref Expression
Assertion rnmptsn ran ( 𝑥𝐴 ↦ { 𝑥 } ) = { 𝑢 ∣ ∃ 𝑥𝐴 𝑢 = { 𝑥 } }

Proof

Step Hyp Ref Expression
1 rnopab ran { ⟨ 𝑥 , 𝑢 ⟩ ∣ ( 𝑥𝐴𝑢 = { 𝑥 } ) } = { 𝑢 ∣ ∃ 𝑥 ( 𝑥𝐴𝑢 = { 𝑥 } ) }
2 df-mpt ( 𝑥𝐴 ↦ { 𝑥 } ) = { ⟨ 𝑥 , 𝑢 ⟩ ∣ ( 𝑥𝐴𝑢 = { 𝑥 } ) }
3 2 rneqi ran ( 𝑥𝐴 ↦ { 𝑥 } ) = ran { ⟨ 𝑥 , 𝑢 ⟩ ∣ ( 𝑥𝐴𝑢 = { 𝑥 } ) }
4 df-rex ( ∃ 𝑥𝐴 𝑢 = { 𝑥 } ↔ ∃ 𝑥 ( 𝑥𝐴𝑢 = { 𝑥 } ) )
5 4 abbii { 𝑢 ∣ ∃ 𝑥𝐴 𝑢 = { 𝑥 } } = { 𝑢 ∣ ∃ 𝑥 ( 𝑥𝐴𝑢 = { 𝑥 } ) }
6 1 3 5 3eqtr4i ran ( 𝑥𝐴 ↦ { 𝑥 } ) = { 𝑢 ∣ ∃ 𝑥𝐴 𝑢 = { 𝑥 } }