Metamath Proof Explorer


Theorem rnmptsn

Description: The range of a function mapping to singletons. (Contributed by ML, 15-Jul-2020)

Ref Expression
Assertion rnmptsn ranxAx=u|xAu=x

Proof

Step Hyp Ref Expression
1 rnopab ranxu|xAu=x=u|xxAu=x
2 df-mpt xAx=xu|xAu=x
3 2 rneqi ranxAx=ranxu|xAu=x
4 df-rex xAu=xxxAu=x
5 4 abbii u|xAu=x=u|xxAu=x
6 1 3 5 3eqtr4i ranxAx=u|xAu=x