Metamath Proof Explorer


Theorem f1omptsnlem

Description: This is the core of the proof of f1omptsn , but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 15-Jul-2020)

Ref Expression
Hypotheses f1omptsn.f F = x A x
f1omptsn.r R = u | x A u = x
Assertion f1omptsnlem F : A 1-1 onto R

Proof

Step Hyp Ref Expression
1 f1omptsn.f F = x A x
2 f1omptsn.r R = u | x A u = x
3 eqid x = x
4 snex x V
5 eqsbc1 x V [˙ x / u]˙ u = x x = x
6 4 5 ax-mp [˙ x / u]˙ u = x x = x
7 3 6 mpbir [˙ x / u]˙ u = x
8 sbcel2 [˙ x / u]˙ x A x x / u A
9 csbconstg x V x / u A = A
10 4 9 ax-mp x / u A = A
11 10 eleq2i x x / u A x A
12 8 11 bitri [˙ x / u]˙ x A x A
13 2 abeq2i u R x A u = x
14 df-rex x A u = x x x A u = x
15 13 14 sylbbr x x A u = x u R
16 15 19.23bi x A u = x u R
17 16 sbcth x V [˙ x / u]˙ x A u = x u R
18 4 17 ax-mp [˙ x / u]˙ x A u = x u R
19 sbcimg x V [˙ x / u]˙ x A u = x u R [˙ x / u]˙ x A u = x [˙ x / u]˙ u R
20 4 19 ax-mp [˙ x / u]˙ x A u = x u R [˙ x / u]˙ x A u = x [˙ x / u]˙ u R
21 18 20 mpbi [˙ x / u]˙ x A u = x [˙ x / u]˙ u R
22 sbcan [˙ x / u]˙ x A u = x [˙ x / u]˙ x A [˙ x / u]˙ u = x
23 sbcel1v [˙ x / u]˙ u R x R
24 21 22 23 3imtr3i [˙ x / u]˙ x A [˙ x / u]˙ u = x x R
25 12 24 sylanbr x A [˙ x / u]˙ u = x x R
26 7 25 mpan2 x A x R
27 1 26 fmpti F : A R
28 1 fvmpt2 x A x R F x = x
29 26 28 mpdan x A F x = x
30 sneq x = y x = y
31 30 1 4 fvmpt3i y A F y = y
32 29 31 eqeqan12d x A y A F x = F y x = y
33 vex x V
34 sneqbg x V x = y x = y
35 33 34 ax-mp x = y x = y
36 32 35 bitrdi x A y A F x = F y x = y
37 36 biimpd x A y A F x = F y x = y
38 37 rgen2 x A y A F x = F y x = y
39 dff13 F : A 1-1 R F : A R x A y A F x = F y x = y
40 27 38 39 mpbir2an F : A 1-1 R
41 f1f1orn F : A 1-1 R F : A 1-1 onto ran F
42 40 41 ax-mp F : A 1-1 onto ran F
43 rnmptsn ran x A x = u | x A u = x
44 1 rneqi ran F = ran x A x
45 43 44 2 3eqtr4i ran F = R
46 f1oeq3 ran F = R F : A 1-1 onto ran F F : A 1-1 onto R
47 45 46 ax-mp F : A 1-1 onto ran F F : A 1-1 onto R
48 42 47 mpbi F : A 1-1 onto R