Description: This is the core of the proof of f1omptsn , but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 15-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | f1omptsn.f | |
|
f1omptsn.r | |
||
Assertion | f1omptsnlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1omptsn.f | |
|
2 | f1omptsn.r | |
|
3 | eqid | |
|
4 | vsnex | |
|
5 | eqsbc1 | |
|
6 | 4 5 | ax-mp | |
7 | 3 6 | mpbir | |
8 | sbcel2 | |
|
9 | csbconstg | |
|
10 | 4 9 | ax-mp | |
11 | 10 | eleq2i | |
12 | 8 11 | bitri | |
13 | 2 | eqabri | |
14 | df-rex | |
|
15 | 13 14 | sylbbr | |
16 | 15 | 19.23bi | |
17 | 16 | sbcth | |
18 | 4 17 | ax-mp | |
19 | sbcimg | |
|
20 | 4 19 | ax-mp | |
21 | 18 20 | mpbi | |
22 | sbcan | |
|
23 | sbcel1v | |
|
24 | 21 22 23 | 3imtr3i | |
25 | 12 24 | sylanbr | |
26 | 7 25 | mpan2 | |
27 | 1 26 | fmpti | |
28 | 1 | fvmpt2 | |
29 | 26 28 | mpdan | |
30 | sneq | |
|
31 | 30 1 4 | fvmpt3i | |
32 | 29 31 | eqeqan12d | |
33 | vex | |
|
34 | sneqbg | |
|
35 | 33 34 | ax-mp | |
36 | 32 35 | bitrdi | |
37 | 36 | biimpd | |
38 | 37 | rgen2 | |
39 | dff13 | |
|
40 | 27 38 39 | mpbir2an | |
41 | f1f1orn | |
|
42 | 40 41 | ax-mp | |
43 | rnmptsn | |
|
44 | 1 | rneqi | |
45 | 43 44 2 | 3eqtr4i | |
46 | f1oeq3 | |
|
47 | 45 46 | ax-mp | |
48 | 42 47 | mpbi | |