Metamath Proof Explorer


Theorem vtxdusgradjvtx

Description: The degree of a vertex in a simple graph is the number of vertices adjacent to this vertex. (Contributed by Alexander van der Vekens, 9-Jul-2018) (Revised by AV, 23-Dec-2020)

Ref Expression
Hypotheses vtxdusgradjvtx.v
|- V = ( Vtx ` G )
vtxdusgradjvtx.e
|- E = ( Edg ` G )
Assertion vtxdusgradjvtx
|- ( ( G e. USGraph /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = ( # ` { v e. V | { U , v } e. E } ) )

Proof

Step Hyp Ref Expression
1 vtxdusgradjvtx.v
 |-  V = ( Vtx ` G )
2 vtxdusgradjvtx.e
 |-  E = ( Edg ` G )
3 1 hashnbusgrvd
 |-  ( ( G e. USGraph /\ U e. V ) -> ( # ` ( G NeighbVtx U ) ) = ( ( VtxDeg ` G ) ` U ) )
4 1 2 nbusgrvtx
 |-  ( ( G e. USGraph /\ U e. V ) -> ( G NeighbVtx U ) = { v e. V | { U , v } e. E } )
5 4 fveq2d
 |-  ( ( G e. USGraph /\ U e. V ) -> ( # ` ( G NeighbVtx U ) ) = ( # ` { v e. V | { U , v } e. E } ) )
6 3 5 eqtr3d
 |-  ( ( G e. USGraph /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = ( # ` { v e. V | { U , v } e. E } ) )