Description: The degree of a vertex in a simple graph is the number of vertices adjacent to this vertex. (Contributed by Alexander van der Vekens, 9-Jul-2018) (Revised by AV, 23-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdusgradjvtx.v | |- V = ( Vtx ` G ) |
|
| vtxdusgradjvtx.e | |- E = ( Edg ` G ) |
||
| Assertion | vtxdusgradjvtx | |- ( ( G e. USGraph /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = ( # ` { v e. V | { U , v } e. E } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdusgradjvtx.v | |- V = ( Vtx ` G ) |
|
| 2 | vtxdusgradjvtx.e | |- E = ( Edg ` G ) |
|
| 3 | 1 | hashnbusgrvd | |- ( ( G e. USGraph /\ U e. V ) -> ( # ` ( G NeighbVtx U ) ) = ( ( VtxDeg ` G ) ` U ) ) |
| 4 | 1 2 | nbusgrvtx | |- ( ( G e. USGraph /\ U e. V ) -> ( G NeighbVtx U ) = { v e. V | { U , v } e. E } ) |
| 5 | 4 | fveq2d | |- ( ( G e. USGraph /\ U e. V ) -> ( # ` ( G NeighbVtx U ) ) = ( # ` { v e. V | { U , v } e. E } ) ) |
| 6 | 3 5 | eqtr3d | |- ( ( G e. USGraph /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = ( # ` { v e. V | { U , v } e. E } ) ) |