Description: The degree of a vertex in a simple graph is the number of vertices adjacent to this vertex. (Contributed by Alexander van der Vekens, 9-Jul-2018) (Revised by AV, 23-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdusgradjvtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxdusgradjvtx.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | vtxdusgradjvtx | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdusgradjvtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxdusgradjvtx.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 | hashnbusgrvd | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ) |
| 4 | 1 2 | nbusgrvtx | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑈 ) = { 𝑣 ∈ 𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } ) |
| 5 | 4 | fveq2d | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } ) ) |
| 6 | 3 5 | eqtr3d | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } ) ) |