| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtxdusgradjvtx.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
vtxdusgradjvtx.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
1 2
|
vtxdusgradjvtx |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } ) ) |
| 4 |
3
|
eqeq1d |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ↔ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } ) = 0 ) ) |
| 5 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 6 |
5
|
rabex |
⊢ { 𝑣 ∈ 𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } ∈ V |
| 7 |
|
hasheq0 |
⊢ ( { 𝑣 ∈ 𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } ∈ V → ( ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } ) = 0 ↔ { 𝑣 ∈ 𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } = ∅ ) ) |
| 8 |
6 7
|
ax-mp |
⊢ ( ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } ) = 0 ↔ { 𝑣 ∈ 𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } = ∅ ) |
| 9 |
|
rabeq0 |
⊢ ( { 𝑣 ∈ 𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } = ∅ ↔ ∀ 𝑣 ∈ 𝑉 ¬ { 𝑈 , 𝑣 } ∈ 𝐸 ) |
| 10 |
|
ralnex |
⊢ ( ∀ 𝑣 ∈ 𝑉 ¬ { 𝑈 , 𝑣 } ∈ 𝐸 ↔ ¬ ∃ 𝑣 ∈ 𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 ) |
| 11 |
10
|
biimpi |
⊢ ( ∀ 𝑣 ∈ 𝑉 ¬ { 𝑈 , 𝑣 } ∈ 𝐸 → ¬ ∃ 𝑣 ∈ 𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 ) |
| 12 |
11
|
a1i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ∀ 𝑣 ∈ 𝑉 ¬ { 𝑈 , 𝑣 } ∈ 𝐸 → ¬ ∃ 𝑣 ∈ 𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 ) ) |
| 13 |
9 12
|
biimtrid |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( { 𝑣 ∈ 𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } = ∅ → ¬ ∃ 𝑣 ∈ 𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 ) ) |
| 14 |
8 13
|
biimtrid |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } ) = 0 → ¬ ∃ 𝑣 ∈ 𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 ) ) |
| 15 |
4 14
|
sylbid |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 → ¬ ∃ 𝑣 ∈ 𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 ) ) |