Metamath Proof Explorer


Theorem usgrvd0nedg

Description: If a vertex in a simple graph has degree 0, the vertex is not adjacent to another vertex via an edge. (Contributed by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 16-Dec-2020) (Proof shortened by AV, 23-Dec-2020)

Ref Expression
Hypotheses vtxdusgradjvtx.v 𝑉 = ( Vtx ‘ 𝐺 )
vtxdusgradjvtx.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion usgrvd0nedg ( ( 𝐺 ∈ USGraph ∧ 𝑈𝑉 ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 → ¬ ∃ 𝑣𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 ) )

Proof

Step Hyp Ref Expression
1 vtxdusgradjvtx.v 𝑉 = ( Vtx ‘ 𝐺 )
2 vtxdusgradjvtx.e 𝐸 = ( Edg ‘ 𝐺 )
3 1 2 vtxdusgradjvtx ( ( 𝐺 ∈ USGraph ∧ 𝑈𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = ( ♯ ‘ { 𝑣𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } ) )
4 3 eqeq1d ( ( 𝐺 ∈ USGraph ∧ 𝑈𝑉 ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ↔ ( ♯ ‘ { 𝑣𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } ) = 0 ) )
5 1 fvexi 𝑉 ∈ V
6 5 rabex { 𝑣𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } ∈ V
7 hasheq0 ( { 𝑣𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } ∈ V → ( ( ♯ ‘ { 𝑣𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } ) = 0 ↔ { 𝑣𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } = ∅ ) )
8 6 7 ax-mp ( ( ♯ ‘ { 𝑣𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } ) = 0 ↔ { 𝑣𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } = ∅ )
9 rabeq0 ( { 𝑣𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } = ∅ ↔ ∀ 𝑣𝑉 ¬ { 𝑈 , 𝑣 } ∈ 𝐸 )
10 ralnex ( ∀ 𝑣𝑉 ¬ { 𝑈 , 𝑣 } ∈ 𝐸 ↔ ¬ ∃ 𝑣𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 )
11 10 biimpi ( ∀ 𝑣𝑉 ¬ { 𝑈 , 𝑣 } ∈ 𝐸 → ¬ ∃ 𝑣𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 )
12 11 a1i ( ( 𝐺 ∈ USGraph ∧ 𝑈𝑉 ) → ( ∀ 𝑣𝑉 ¬ { 𝑈 , 𝑣 } ∈ 𝐸 → ¬ ∃ 𝑣𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 ) )
13 9 12 syl5bi ( ( 𝐺 ∈ USGraph ∧ 𝑈𝑉 ) → ( { 𝑣𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } = ∅ → ¬ ∃ 𝑣𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 ) )
14 8 13 syl5bi ( ( 𝐺 ∈ USGraph ∧ 𝑈𝑉 ) → ( ( ♯ ‘ { 𝑣𝑉 ∣ { 𝑈 , 𝑣 } ∈ 𝐸 } ) = 0 → ¬ ∃ 𝑣𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 ) )
15 4 14 sylbid ( ( 𝐺 ∈ USGraph ∧ 𝑈𝑉 ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 → ¬ ∃ 𝑣𝑉 { 𝑈 , 𝑣 } ∈ 𝐸 ) )