Metamath Proof Explorer


Theorem wfaxnul

Description: The class of well-founded sets models the Null Set Axiom ax-nul . (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Hypothesis wfax.1
|- W = U. ( R1 " On )
Assertion wfaxnul
|- E. x e. W A. y e. W -. y e. x

Proof

Step Hyp Ref Expression
1 wfax.1
 |-  W = U. ( R1 " On )
2 onwf
 |-  On C_ U. ( R1 " On )
3 0elon
 |-  (/) e. On
4 2 3 sselii
 |-  (/) e. U. ( R1 " On )
5 4 1 eleqtrri
 |-  (/) e. W
6 0elaxnul
 |-  ( (/) e. W -> E. x e. W A. y e. W -. y e. x )
7 5 6 ax-mp
 |-  E. x e. W A. y e. W -. y e. x