Step |
Hyp |
Ref |
Expression |
1 |
|
equvinva |
|- ( z = y -> E. w ( z = w /\ y = w ) ) |
2 |
|
ax-wl-13v |
|- ( -. A. x x = y -> ( y = w -> A. x y = w ) ) |
3 |
|
equeucl |
|- ( z = w -> ( y = w -> z = y ) ) |
4 |
3
|
alimdv |
|- ( z = w -> ( A. x y = w -> A. x z = y ) ) |
5 |
2 4
|
syl9 |
|- ( -. A. x x = y -> ( z = w -> ( y = w -> A. x z = y ) ) ) |
6 |
5
|
impd |
|- ( -. A. x x = y -> ( ( z = w /\ y = w ) -> A. x z = y ) ) |
7 |
6
|
exlimdv |
|- ( -. A. x x = y -> ( E. w ( z = w /\ y = w ) -> A. x z = y ) ) |
8 |
1 7
|
syl5 |
|- ( -. A. x x = y -> ( z = y -> A. x z = y ) ) |