Metamath Proof Explorer


Theorem wl-lem-exsb

Description: This theorem provides a basic working step in proving theorems about E* or E! . (Contributed by Wolf Lammen, 3-Oct-2019)

Ref Expression
Assertion wl-lem-exsb
|- ( x = y -> ( ph <-> A. x ( x = y -> ph ) ) )

Proof

Step Hyp Ref Expression
1 ax12v2
 |-  ( x = y -> ( ph -> A. x ( x = y -> ph ) ) )
2 sp
 |-  ( A. x ( x = y -> ph ) -> ( x = y -> ph ) )
3 2 com12
 |-  ( x = y -> ( A. x ( x = y -> ph ) -> ph ) )
4 1 3 impbid
 |-  ( x = y -> ( ph <-> A. x ( x = y -> ph ) ) )