Description: This theorem provides a basic working step in proving theorems about E* or E! . (Contributed by Wolf Lammen, 3-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-lem-exsb | |- ( x = y -> ( ph <-> A. x ( x = y -> ph ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax12v2 | |- ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) |
|
2 | sp | |- ( A. x ( x = y -> ph ) -> ( x = y -> ph ) ) |
|
3 | 2 | com12 | |- ( x = y -> ( A. x ( x = y -> ph ) -> ph ) ) |
4 | 1 3 | impbid | |- ( x = y -> ( ph <-> A. x ( x = y -> ph ) ) ) |