Description: This theorem provides a basic working step in proving theorems about E* or E! . (Contributed by Wolf Lammen, 3-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-lem-nexmo | |- ( -. E. x ph -> A. x ( ph -> x = z ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alnex | |- ( A. x -. ph <-> -. E. x ph ) |
|
2 | pm2.21 | |- ( -. ph -> ( ph -> x = z ) ) |
|
3 | 2 | alimi | |- ( A. x -. ph -> A. x ( ph -> x = z ) ) |
4 | 1 3 | sylbir | |- ( -. E. x ph -> A. x ( ph -> x = z ) ) |