Metamath Proof Explorer


Theorem wl-lem-nexmo

Description: This theorem provides a basic working step in proving theorems about E* or E! . (Contributed by Wolf Lammen, 3-Oct-2019)

Ref Expression
Assertion wl-lem-nexmo ( ¬ ∃ 𝑥 𝜑 → ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) )

Proof

Step Hyp Ref Expression
1 alnex ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 )
2 pm2.21 ( ¬ 𝜑 → ( 𝜑𝑥 = 𝑧 ) )
3 2 alimi ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) )
4 1 3 sylbir ( ¬ ∃ 𝑥 𝜑 → ∀ 𝑥 ( 𝜑𝑥 = 𝑧 ) )