Metamath Proof Explorer


Theorem wl-lem-nexmo

Description: This theorem provides a basic working step in proving theorems about E* or E! . (Contributed by Wolf Lammen, 3-Oct-2019)

Ref Expression
Assertion wl-lem-nexmo ¬ x φ x φ x = z

Proof

Step Hyp Ref Expression
1 alnex x ¬ φ ¬ x φ
2 pm2.21 ¬ φ φ x = z
3 2 alimi x ¬ φ x φ x = z
4 1 3 sylbir ¬ x φ x φ x = z