Metamath Proof Explorer


Theorem wl-lem-moexsb

Description: The antecedent A. x ( ph -> x = z ) relates to E* x ph , but is better suited for usage in proofs. Note that no distinct variable restriction is placed on ph .

This theorem provides a basic working step in proving theorems about E* or E! . (Contributed by Wolf Lammen, 3-Oct-2019)

Ref Expression
Assertion wl-lem-moexsb x φ x = z x φ z x φ

Proof

Step Hyp Ref Expression
1 nfa1 x x φ x = z
2 nfs1v x z x φ
3 sp x φ x = z φ x = z
4 ax12v2 x = z φ x x = z φ
5 3 4 syli x φ x = z φ x x = z φ
6 sb6 z x φ x x = z φ
7 5 6 syl6ibr x φ x = z φ z x φ
8 1 2 7 exlimd x φ x = z x φ z x φ
9 spsbe z x φ x φ
10 8 9 impbid1 x φ x = z x φ z x φ