Metamath Proof Explorer
Description: This theorem extends alanimi to a biconditional. Recurrent usage
stacks up more quantifiers. (Contributed by Wolf Lammen, 4-Oct-2019)
|
|
Ref |
Expression |
|
Hypothesis |
wl-alanbii.1 |
|
|
Assertion |
wl-alanbii |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wl-alanbii.1 |
|
| 2 |
1
|
albii |
|
| 3 |
|
19.26 |
|
| 4 |
2 3
|
bitri |
|