Description: This theorem extends alanimi to a biconditional. Recurrent usage stacks up more quantifiers. (Contributed by Wolf Lammen, 4-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | wl-alanbii.1 | |- ( ph <-> ( ps /\ ch ) ) |
|
Assertion | wl-alanbii | |- ( A. x ph <-> ( A. x ps /\ A. x ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-alanbii.1 | |- ( ph <-> ( ps /\ ch ) ) |
|
2 | 1 | albii | |- ( A. x ph <-> A. x ( ps /\ ch ) ) |
3 | 19.26 | |- ( A. x ( ps /\ ch ) <-> ( A. x ps /\ A. x ch ) ) |
|
4 | 2 3 | bitri | |- ( A. x ph <-> ( A. x ps /\ A. x ch ) ) |