Step |
Hyp |
Ref |
Expression |
1 |
|
wl-mo2df.1 |
|- F/ x ph |
2 |
|
wl-mo2df.2 |
|- F/ y ph |
3 |
|
wl-mo2df.3 |
|- ( ph -> -. A. x x = y ) |
4 |
|
wl-mo2df.4 |
|- ( ph -> F/ y ps ) |
5 |
|
df-mo |
|- ( E* x ps <-> E. u A. x ( ps -> x = u ) ) |
6 |
|
nfeqf1 |
|- ( -. A. y y = x -> F/ y x = u ) |
7 |
6
|
naecoms |
|- ( -. A. x x = y -> F/ y x = u ) |
8 |
3 7
|
syl |
|- ( ph -> F/ y x = u ) |
9 |
4 8
|
nfimd |
|- ( ph -> F/ y ( ps -> x = u ) ) |
10 |
1 9
|
nfald |
|- ( ph -> F/ y A. x ( ps -> x = u ) ) |
11 |
|
nfnae |
|- F/ x -. A. x x = y |
12 |
|
nfeqf2 |
|- ( -. A. x x = y -> F/ x u = y ) |
13 |
11 12
|
nfan1 |
|- F/ x ( -. A. x x = y /\ u = y ) |
14 |
|
equequ2 |
|- ( u = y -> ( x = u <-> x = y ) ) |
15 |
14
|
imbi2d |
|- ( u = y -> ( ( ps -> x = u ) <-> ( ps -> x = y ) ) ) |
16 |
15
|
adantl |
|- ( ( -. A. x x = y /\ u = y ) -> ( ( ps -> x = u ) <-> ( ps -> x = y ) ) ) |
17 |
13 16
|
albid |
|- ( ( -. A. x x = y /\ u = y ) -> ( A. x ( ps -> x = u ) <-> A. x ( ps -> x = y ) ) ) |
18 |
3 17
|
sylan |
|- ( ( ph /\ u = y ) -> ( A. x ( ps -> x = u ) <-> A. x ( ps -> x = y ) ) ) |
19 |
18
|
ex |
|- ( ph -> ( u = y -> ( A. x ( ps -> x = u ) <-> A. x ( ps -> x = y ) ) ) ) |
20 |
2 10 19
|
cbvexd |
|- ( ph -> ( E. u A. x ( ps -> x = u ) <-> E. y A. x ( ps -> x = y ) ) ) |
21 |
5 20
|
syl5bb |
|- ( ph -> ( E* x ps <-> E. y A. x ( ps -> x = y ) ) ) |