Metamath Proof Explorer


Theorem wl-alanbii

Description: This theorem extends alanimi to a biconditional. Recurrent usage stacks up more quantifiers. (Contributed by Wolf Lammen, 4-Oct-2019)

Ref Expression
Hypothesis wl-alanbii.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
Assertion wl-alanbii ( ∀ 𝑥 𝜑 ↔ ( ∀ 𝑥 𝜓 ∧ ∀ 𝑥 𝜒 ) )

Proof

Step Hyp Ref Expression
1 wl-alanbii.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
2 1 albii ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 ( 𝜓𝜒 ) )
3 19.26 ( ∀ 𝑥 ( 𝜓𝜒 ) ↔ ( ∀ 𝑥 𝜓 ∧ ∀ 𝑥 𝜒 ) )
4 2 3 bitri ( ∀ 𝑥 𝜑 ↔ ( ∀ 𝑥 𝜓 ∧ ∀ 𝑥 𝜒 ) )