Metamath Proof Explorer
Description: This theorem extends alanimi to a biconditional. Recurrent usage
stacks up more quantifiers. (Contributed by Wolf Lammen, 4-Oct-2019)
|
|
Ref |
Expression |
|
Hypothesis |
wl-alanbii.1 |
⊢ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) |
|
Assertion |
wl-alanbii |
⊢ ( ∀ 𝑥 𝜑 ↔ ( ∀ 𝑥 𝜓 ∧ ∀ 𝑥 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
wl-alanbii.1 |
⊢ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) |
2 |
1
|
albii |
⊢ ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 ( 𝜓 ∧ 𝜒 ) ) |
3 |
|
19.26 |
⊢ ( ∀ 𝑥 ( 𝜓 ∧ 𝜒 ) ↔ ( ∀ 𝑥 𝜓 ∧ ∀ 𝑥 𝜒 ) ) |
4 |
2 3
|
bitri |
⊢ ( ∀ 𝑥 𝜑 ↔ ( ∀ 𝑥 𝜓 ∧ ∀ 𝑥 𝜒 ) ) |