Description: A contraposition inference. Copy of con1i with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wl-luk-con1i.1 | |- ( -. ph -> ps ) |
|
| Assertion | wl-luk-con1i | |- ( -. ps -> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wl-luk-con1i.1 | |- ( -. ph -> ps ) |
|
| 2 | wl-luk-pm2.21 | |- ( -. ps -> ( ps -> ph ) ) |
|
| 3 | 1 2 | wl-luk-imtrid | |- ( -. ps -> ( -. ph -> ph ) ) |
| 4 | 3 | wl-luk-pm2.18d | |- ( -. ps -> ph ) |