Description: A contraposition inference. Copy of con1i with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018) (New usage is discouraged.) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | wl-luk-con1i.1 | |- ( -. ph -> ps ) |
|
Assertion | wl-luk-con1i | |- ( -. ps -> ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-luk-con1i.1 | |- ( -. ph -> ps ) |
|
2 | wl-luk-pm2.21 | |- ( -. ps -> ( ps -> ph ) ) |
|
3 | 1 2 | wl-luk-imtrid | |- ( -. ps -> ( -. ph -> ph ) ) |
4 | 3 | wl-luk-pm2.18d | |- ( -. ps -> ph ) |