Metamath Proof Explorer


Theorem wl-luk-con1i

Description: A contraposition inference. Copy of con1i with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis wl-luk-con1i.1
|- ( -. ph -> ps )
Assertion wl-luk-con1i
|- ( -. ps -> ph )

Proof

Step Hyp Ref Expression
1 wl-luk-con1i.1
 |-  ( -. ph -> ps )
2 wl-luk-pm2.21
 |-  ( -. ps -> ( ps -> ph ) )
3 1 2 wl-luk-imtrid
 |-  ( -. ps -> ( -. ph -> ph ) )
4 3 wl-luk-pm2.18d
 |-  ( -. ps -> ph )