Metamath Proof Explorer


Theorem wl-luk-ja

Description: Inference joining the antecedents of two premises. Copy of ja with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses wl-luk-ja.1
|- ( -. ph -> ch )
wl-luk-ja.2
|- ( ps -> ch )
Assertion wl-luk-ja
|- ( ( ph -> ps ) -> ch )

Proof

Step Hyp Ref Expression
1 wl-luk-ja.1
 |-  ( -. ph -> ch )
2 wl-luk-ja.2
 |-  ( ps -> ch )
3 1 wl-luk-con1i
 |-  ( -. ch -> ph )
4 2 wl-luk-imim2i
 |-  ( ( ph -> ps ) -> ( ph -> ch ) )
5 3 4 wl-luk-imtrid
 |-  ( ( ph -> ps ) -> ( -. ch -> ch ) )
6 5 wl-luk-pm2.18d
 |-  ( ( ph -> ps ) -> ch )