Description: Inference joining the antecedents of two premises. Copy of ja with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018) (New usage is discouraged.) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wl-luk-ja.1 | ⊢ ( ¬ 𝜑 → 𝜒 ) | |
wl-luk-ja.2 | ⊢ ( 𝜓 → 𝜒 ) | ||
Assertion | wl-luk-ja | ⊢ ( ( 𝜑 → 𝜓 ) → 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-luk-ja.1 | ⊢ ( ¬ 𝜑 → 𝜒 ) | |
2 | wl-luk-ja.2 | ⊢ ( 𝜓 → 𝜒 ) | |
3 | 1 | wl-luk-con1i | ⊢ ( ¬ 𝜒 → 𝜑 ) |
4 | 2 | wl-luk-imim2i | ⊢ ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) |
5 | 3 4 | wl-luk-imtrid | ⊢ ( ( 𝜑 → 𝜓 ) → ( ¬ 𝜒 → 𝜒 ) ) |
6 | 5 | wl-luk-pm2.18d | ⊢ ( ( 𝜑 → 𝜓 ) → 𝜒 ) |