Description: Inference joining the antecedents of two premises. Copy of ja with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wl-luk-ja.1 | ⊢ ( ¬ 𝜑 → 𝜒 ) | |
| wl-luk-ja.2 | ⊢ ( 𝜓 → 𝜒 ) | ||
| Assertion | wl-luk-ja | ⊢ ( ( 𝜑 → 𝜓 ) → 𝜒 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wl-luk-ja.1 | ⊢ ( ¬ 𝜑 → 𝜒 ) | |
| 2 | wl-luk-ja.2 | ⊢ ( 𝜓 → 𝜒 ) | |
| 3 | 1 | wl-luk-con1i | ⊢ ( ¬ 𝜒 → 𝜑 ) | 
| 4 | 2 | wl-luk-imim2i | ⊢ ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) | 
| 5 | 3 4 | wl-luk-imtrid | ⊢ ( ( 𝜑 → 𝜓 ) → ( ¬ 𝜒 → 𝜒 ) ) | 
| 6 | 5 | wl-luk-pm2.18d | ⊢ ( ( 𝜑 → 𝜓 ) → 𝜒 ) |