Metamath Proof Explorer


Theorem wl-luk-ja

Description: Inference joining the antecedents of two premises. Copy of ja with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses wl-luk-ja.1 ( ¬ 𝜑𝜒 )
wl-luk-ja.2 ( 𝜓𝜒 )
Assertion wl-luk-ja ( ( 𝜑𝜓 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 wl-luk-ja.1 ( ¬ 𝜑𝜒 )
2 wl-luk-ja.2 ( 𝜓𝜒 )
3 1 wl-luk-con1i ( ¬ 𝜒𝜑 )
4 2 wl-luk-imim2i ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) )
5 3 4 wl-luk-imtrid ( ( 𝜑𝜓 ) → ( ¬ 𝜒𝜒 ) )
6 5 wl-luk-pm2.18d ( ( 𝜑𝜓 ) → 𝜒 )